1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
use crate::{algorithms::ScaleNonUniform, primitives::Arc};

/// Something who's dimensions can be scaled uniformly.
pub trait Scale {
    /// Scale the object in-place.
    fn scale(&mut self, scale_factor: f64);

    /// Convenience method for getting a scaled copy of this object.
    fn scaled(&self, scale_factor: f64) -> Self
    where
        Self: Sized + Clone,
    {
        let mut clone = self.clone();
        clone.scale(scale_factor);

        clone
    }
}

impl<S: ScaleNonUniform> Scale for S {
    fn scale(&mut self, scale_factor: f64) {
        self.scale_non_uniform(scale_factor, scale_factor);
    }
}

impl<Space> Scale for Arc<Space> {
    fn scale(&mut self, scale_factor: f64) {
        *self = Arc::from_centre_radius(
            self.centre().scaled(scale_factor),
            self.radius() * scale_factor,
            self.start_angle(),
            self.sweep_angle(),
        );
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{
        algorithms::{AffineTransformable, Translate},
        primitives::{Arc, Line},
        BoundingBox,
    };
    use euclid::Angle;

    pub type Vector = euclid::default::Vector2D<f64>;
    pub type Transform = euclid::default::Transform2D<f64>;
    pub type Point = euclid::default::Point2D<f64>;

    #[test]
    fn scale_vector() {
        let original = Vector::new(1.0, 1.0);
        let scale_factor = 2.0;

        let actual = original.scaled(scale_factor);
        let expected = Vector::new(2.0, 2.0);

        assert_eq!(actual, expected);
    }

    #[test]
    fn scale_line() {
        let start = Point::new(2.0, 4.0);
        let end = Point::new(3.0, -5.0);
        let original = Line::new(start, end);
        let scale_factor = 1.5;

        let actual = original.scaled(scale_factor);
        let expected = Line::new(Point::new(3.0, 6.0), Point::new(4.5, -7.5));

        assert_eq!(actual, expected);
    }

    #[test]
    fn scale_line_around_mid_point() {
        let start = Point::new(2.0, 4.0);
        let end = Point::new(3.0, -5.0);
        let original = Line::new(start, end);
        let scale_factor = 1.5;
        let mid_point = (start + original.displacement() * 0.5).to_vector();
        let expected =
            Line::new(Point::new(1.75, 6.25), Point::new(3.25, -7.25));

        // we can either use explicit transformation methods:
        let mut transformed = original.translated(Vector::zero() - mid_point);
        transformed.scale(scale_factor);
        transformed.translate(mid_point);

        assert_eq!(transformed, expected);

        // Or compose an `Affine` and pass it directly to the `transform`
        // method: keep in mind that transforms get composed *in reverse
        // execution order*
        let combined_transform =
            Transform::create_translation(-mid_point.x, -mid_point.y)
                .post_scale(scale_factor, scale_factor)
                .post_translate(mid_point);

        let transformed = original.transformed(combined_transform);

        assert_eq!(transformed, expected);
    }

    #[test]
    fn scale_arc() {
        let x = -1.4;
        let y = 2.0;
        let centre = Point::new(x, y);
        let radius = 5.0;
        let start_angle = Angle::radians(0.5);
        let sweep_angle = Angle::radians(1.0);
        let original =
            Arc::from_centre_radius(centre, radius, start_angle, sweep_angle);
        let scale_factor = 2.0;

        let actual = original.scaled(scale_factor);
        let expected = Arc::from_centre_radius(
            Point::new(x * scale_factor, y * scale_factor),
            radius * scale_factor,
            start_angle,
            sweep_angle,
        );

        assert_eq!(actual, expected);
    }

    #[test]
    fn scale_arc_around_centre() {
        let x = -1.4;
        let y = 2.0;
        let centre = Point::new(x, y);
        let radius = 5.0;
        let start_angle = Angle::radians(0.5);
        let sweep_angle = Angle::radians(1.0);
        let original =
            Arc::from_centre_radius(centre, radius, start_angle, sweep_angle);
        let scale_factor = 2.0;

        let expected = Arc::from_centre_radius(
            centre,
            radius * scale_factor,
            start_angle,
            sweep_angle,
        );

        let mut transformed =
            original.translated(Vector::zero() - centre.to_vector());
        transformed.scale(scale_factor);
        transformed.translate(centre.to_vector());

        assert_eq!(transformed, expected);
    }

    #[test]
    fn scale_bounding_box() {
        let first = Point::new(-2.0, 1.5);
        let second = Point::new(4.0, 3.5);
        let scale_factor = 1.5;
        let original = BoundingBox::new(first, second);

        let expected =
            BoundingBox::new(Point::new(-3.0, 2.25), Point::new(6.0, 5.25));
        let actual = original.scaled(scale_factor);

        assert_eq!(actual, expected);
    }
}